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A MODEL-BASED APPROACH  

TO  

SCINTILLATOR/PHOTOMULTIPLIER SYSTEM CHARACTERIZATION  

James V Candy 

 

Scintillator/photomultiplier systems are prevalent in many instruments to measure a 

variety on nuclear events. When gamma energy from a nuclear event irradiates the scintillator, 

event radiation interacts with the scintillator material generating photons which are detected by 

the photomultiplier tube (PMT) [1], [2].  The PMT photoelectrons or photocathode current is 

amplified in the PMT by a number of dynode stages producing a total charge out for a given 

radiation flux into scintillator. The resulting current is converted to a voltage when passed 

through a typical load impedance.  This voltage is attenuated and provided as input to a digitizer 

through a variety of signal conditioners (filters, amplifiers, receivers) before analog-to-digital 

conversion. In this report, we concentrate on the development of analytic models for  the 

scintillator/photomultiplier system and develop both a (1) statistical simulator; and (2) a model-

based signal processor to extract the desired signal information while rejecting the noise and 

uncertainty. We develop the model analytically, transform it to the model-based framework 

(state-space [3], [4]), and then use actual experimental data to fit the model and apply it to our 

processing problem. 

A simple diagram of a scintillation/photomultiplier system is shown in Fig. 1. As an 

incident alpha particle interacts with the scintillator crystal, typically sodium iodide (NaI), the 

kinetic energy of the particle is converted into detectable light through the “prompt fluorescence” 

property of the particular crystal. The light (photons) then strike the thin  photocathode material 

of the photomultiplier  causing it to emit a photoelectrons which are focused (electrostatically) 

onto a series of electron multiplier stages or dynodes which amplify the converted energy that is 

eventually collected at the multiplier anode. These dynodes are electrodes that emit a number of 

secondary electrons in response to the absorption of a single photoelectron thereby amplifying 

the original photoelectron from stage-to-stage with a typical gain factor of 710  [1]. These 

electrons are then collected at the anode of the photomultiplier tube (PMT) producing the output 

voltage pulse. It is this pulse that is of most interest, since it is proportional to the original 

incident photon energy emitted from the unknown source. 

 The shape of the voltage pulse at the PMT output is governed by the prompt fluorescence 

intensity of the scintillator crystal at a time t following the initial excitation  with an exponential 

decay time s such that the intensity is given (simply) by 
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where s is usually a few nanoseconds. A full description of the output pulse must also take the 

rise time at the anode into account which is usually around 3 to 4 times larger (faster) than the 

fall, say a . Then the overall voltage output pulse of the scintillator system is given by [2] 
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Using the parameters for a plastic scintillator from [2] ( 1.7ns, 0.2ns,  i 1000s a o    ), the 

resulting pulse is shown in Fig.  2.  Next we develop the model of Eq. 2 from an equivalent 

electrical circuit representation.
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SCINTILLATION PULSE SHAPE MODEL 

 

Following Knoll [2], the shape of the voltage pulse at the anode of the PMT following an 

event depends on the time constant of the anode circuit a  and the decay time of the scintillator 

s  . For our application we would like a very fast output pulse and therefore the design calls for 

the anode circuit time constant a  to be much smaller than that of the scintillator decay time. The 

equivalent anode circuit (ideal) can be realized as a simple parallel resistor/capacitor connection 

with the input current modeling the fluorescence as a simple exponential as in Eq. 1. Here the 

lumped capacitance ( C  ) represents that of the anode and cable connections as well as the circuit 

input capacitance while the resistance ( R  ) is a physical resistor or the input impedance of the 

circuit load. The input electron current arriving at the PMT anode is given by Eq. 1 with the 

initial current a function of the total charge Q collected and given by  
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Thus, writing the node equation using Kirchhoff’s current law [3] we have that total input 

current is the sum of the currents through the resistance and capacitance 

 ( ) ( ) ( )R Ci t i t i t    (4) 

or 

 
( ) ( )

( )
de t e t

i t C
dt R

    (5) 

The solution of this simple differential equation follows using Laplace transforms [3], that is, 
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The transform of the scintillator decay is 
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Assuming zero initial voltage across anode ( (0) 0e  ), then substituting for ( )I s  in Eq. (7), we obtain 
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The cascaded system is shown in Fig. 3 along with the individual transfer functions and corresponding 

impulse responses. 

The inverse Laplace transform (  1L ) of Eq. (9) can be obtained using the partial fraction 

(residue theorem) approach to give the final solution as [3] 
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Figure 3. Cascaded Scintillator/Photomultiplier System Model: (a) Diagram. (b) Transfer function/Impulse  

       response. 
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or simply 
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Finally we have that the output voltage signature for the scintillator is  
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Thus, the output voltage pulse ( )e t  has the identical form of the physical model of Eq. (2). 

 

MODEL-BASED FORM: STATE-SPACE MODEL 

In order to develop our model-based simulation for the scintillator, we choose to use the 

state-space
1
 representation which simply put means that we develop the underlying differential 

equation governing our scintillator model of Eq. (5) which is easily obtained from the cascade of 

sub-systems shown in Fig. 3. 

The photo-cathode system is governed by the differential equation that evolves from the 

transfer function: 

 

1
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( ) ( )                                   [Output Current]
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s

s

d
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y t i t




 



  (13) 

 

where   is the input excitation (assumed to be an impulse-like signal).  

 The anode of the photomultiplier is modeled by the RC-circuit analyzed in the previous section 

and is governed by the Kirchhoff current relation of Eq. (5)  

 

1
( ) ( ) ( )         for               [Anode Voltage]

( ) ( )                                                               [Output Voltage]

a a
a
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d
e t e t K i t RC
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

  (14) 

 

                                                           
1
 States are simply rewriting the n-th order differential equation into n first-order differential equations. 
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If we define the state vector  ( ) : ( ) | ( )
T

t i t e tx , then we obtain the vector-matrix equation  
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or simply  

 
( ) ( ) ( )

( ) ( )

t t u t
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x Ax B
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  (16) 

the usual state-space representation of a linear time-invariant system with , ,A B C  the respective 

,  N ,  x x x u y xN N N N N    system, input and output matrices [4] and having the corresponding 

impulse response ( )H t  and transfer function ( )H s  given by 

   ( ) 1 1     and  ( ) : ( )  = ( - )A tH t C e B H s L H t C sI A B     , respectively. The transfer 

function (zero initial conditions) follows directly by taking the inverse Laplace transform of Eq. 

(16) and combining, that is, 
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
  (17) 

Combining terms and solving using 1( )sI A   gives the transfer function directly. For our 

problem of Eq. (15), we obtain 
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  (18) 

which completes the state-space representation of the scintillator-photomultiplier system.  
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MODEL-BASED FORM: SAMPLED-DATA STATE-SPACE MODEL 

 The continuous-time state-space model requires numerical integration. Since the signals 

are to be digitized, a more reasonable model can be achieved using sampled-data theory to 

transform directly from continuous to discrete-time systems [3], [4].  

 The solution to the deterministic state-space model of Eq. (16) is given by 

 
0

( ) ( , ) ( ) ( , ) ( )

t

o ot t t t t d     cx Φ x Φ B u   (19) 

where the state transition matrix, Φ , and the subscript “c” (continuous-time) given by   

   ( )
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ot t e
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 cA
Φ   (20) 

 

Sampled-data (A/D) implies that kt t  and therefore   ( )
, k ot t
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Define the sample data system with the input assumed piecewise-constant (p.w.c.), that is, 
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1
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k

k
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k
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and the corresponding measurement system is simply digitized to give 

 ( ) ( )k kt ty Cx   (24) 



9 
 

We developed a simulation of this system and the results are shown in Fig. 4 where we see the 

states the current i and the voltage v and the output y. Here the input was an impulse function. 

 

MODEL-BASED FORM: GAUSS-MARKOV STATE-SPACE MODEL 

The deterministic model of the scintillator/photomultiplier system lacks because of the presence 

of uncertainties not captured in its characterization. The state-space model of Eq. (16) can easily 

be extended to capture both modeling and measurement uncertainties using a Gauss-Markov 

representation (see [4] for more details) given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

t t u t t

y t t t

  

 

x Ax B w

Cx v

  (25) 

where , ,A B C  are the matrices defined above and ,w v  are zero Gaussian noise/uncertainty 

vectors of appropriate dimension with covariance matrices, ,ww vvR R  respectively and 

(0) ~ ( (0), (0))Nx x P
2
 . It can further be shown that the corresponding state and measurement 

statistics satisfy the following relations, that is, defining 

       ( ) : ( ) , ( ) : ( )    and ( ) : cov ( ) , ( ) : cov ( )x y xx yym t E x t m t E y t P t x t R t y t     we have the 

following set of equations (see  [4] for more details): 

 

 

( ) ( ) ( )                                                           [State Mean]

( ) ( ) ( )                                          [State Covariance]

( ) ( )          

x x

T
xx xx xx ww

y x

t t t

t t t
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 

  
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m Am Bu
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m Cm                                                               [Measruement Mean]

( ) ( )                                                        [Measurement Covariance]T
yy xx vvt t R CP C R

 (26) 

 

From these relations, the Gauss-Markov representation enables us to capture the 

uncertainties of the underlying process.  

Since we are using digitized data, then a sampled-data representation of this continuous-

time system will be a better approach to characterizing this system. Therefore, using the same 

approach of the deterministic system given in Eq. (22) we obtain 

                                                           
2
 Here the notation z~N(m,V) means z is Gaussian distributed with mean m and covariance V. 
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where both additive process and measurement noises are zero-mean, Gaussian processes with 

respective covariance matrices are 1( ),  ( )ww k vv kR t R t  with 
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The corresponding statistics are given by (see  [4] for more details): 

 

 

1 1

1 1

( ) ( ) ( )                                                   [State Mean]

( ) ( ) ( )                                         [State Covariance] 

( ) ( )        

x k x k k

T
xx k xx k ww k

y k x k

t t t

t t t

t t

 

 

 
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

m Am Bu

P AP A R

m Cm                                                                 [Measruement Mean]

( ) ( ) ( )                                                [Measurement Covariance]T
yy k xx k vv kt t t R CP C R

 (29) 

for process noise covariance given by 

    
1

( ) ( )
( ) ( )

k

c k c k

k

t
T

A t A t
k ww

t

t e e d
  



 
  wwR R   (30) 

 

Next we illustrate this approach by simulating the scintillator/photomultiplier system with  

uncertainties.         
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Figure 4. Deterministic state-space model output for cascaded scintillator/photomultiplier system simulation. 

 

 

 

GAUSS_MARKOV SIMULATION: SCINTILLATION PULSE SHAPE MODEL 

We performed a Gauss-Markov simulation of the scintillation/photomultiplier system of 

the previous subsection using the set of parameters estimated (see next subsection) from our 

average PMT data set: 
9 91.98, 1.03 10 sec, 4.7 10 secab a sK        . We still used the 

impulse excitation and added zero mean Gaussian noise with respective covariances. The results 

are shown in Fig. 5. 
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Figure 5. Stochastic state-space model output for cascaded scintillator/photomultiplier system simulation. 

 

 

PARAMETER ESTIMATION:  SCINTILLATION PULSE SHAPE MODEL 

In order to develop a simulation of the scintillator output, we must first estimated the 

parameters  ( , ,ab a bK    ) from the measured response (averaged) of our scintillator and 

photomultiplier system shown in Fig. 3. We apply a nonlinear optimization technique available 

in MATLAB  using the well-known  Nelder-Meade algorithm [5]. The results of the fit are 

shown in Fig. 6 illustrating a reasonable estimate of the response. The final parameter estimates 

are: 
9 91.98, 1.03 10 sec, 4.7 10 secab a sK         and are used in the simulation model for 

each of our photomultiplier channels. 



13 
 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Data FIT: 

Iteration  No. = 250, Error = 0.00210

Time (sec)

Optimizer

Iterations

FIT

Response Data

9

9

ˆ 1.98

ˆ 1.03 10 sec

ˆ 4.70 10 sec

o

a

s

I











 

 

 

Figure 6. Parameter estimation for scintillator voltage response: iterates (green), fit (red) and raw response  

      (blue).    

 

 

 

MODEL-BASED PROCESSOR: SCINTILLATION /PHOTOMULTIPLIER SYSTEM 

Now that we have developed a stochastic representation of the scintillator/photomultiplier 

system, which is commonplace in practice with the underlying uncertainties (noise, parameters, 

etc.), we now develop a processor capable of using these models and extracting the desired 

signals from the noisy, uncertain measurement data. Under the Gauss-Markov assumptions, there 

exists and optimal model-based solution---the Kalman filter [4]. The derivation of the Kalman 

filter is beyond the scope of this study, so we just present the sequential sampled-data algorithm 

in Table 2.0 and apply it to the noisy scintillator/photomultiplier data of the previous section. 
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                      Table 2.0:  MODEL-BASED PROCESSOR (Kalman Filter)

ˆ ˆ( | ) ( | ) ( )                                         [State Prediction]
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( | )                                          [Gain Prediction]

ˆ ˆ( | ) ( | ) ( ) ( | )                                  [State Correction]

( | ) ( ) ( | )             

k k

k k k k k k k

k k k k k

t t

t t t t t t t
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
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x x K ε

P I K C P
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                            [State Error Covariance Correction]

where 

ˆ ˆ( | ) := E ( ) |  and ( | ) : cov ( | )  for ( | ) : ( ) ( | )
kk k k t k k k k k k k k kt t x t Y t t t t t t x t t t      x P x x x

   

 Using the synthesized noisy scintillator/photomultiplier data shown in Fig. 5 we applied 

the model-based processor (MBP) of Table 2.0 with the results shown in Fig. 7. The performance 

of the processor is optimum when the innovations sequence is deemed statistically white. The 

results of this run are in fact white indicating optimal performance as shown in Fig. 8. 

In Fig. 7, we observe the results of the MBP estimates: the current and voltage outputs. 

Here we see the smoothed estimates with the predicted uncertainties. The current is reasonable 

but the predicted error bound are clearly under-estimated while the voltages lie well within the 

predicted uncertainty bounds. In Fig. 8 we see the underlying performance metrics for this 

realization of the MBP with the innovations sequence lying within the predicted bounds and the 

optimality test (zero-mean/bounded covariance) well with the prescribed bounds 

(0.00008<0.12000 & 2.7% out) with the weighted-sum squared residual (WSSR) statistic below 

the threshold both indicating a “tuned” optimal processor for this data realization. 
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Figure 7. Estimated outputs for cascaded scintillator/photomultiplier system data: (a) Photoelectron current  

(100% out). (b) Anode voltage (2.5% out). (c) Measured output voltage (2.4% out). 
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Figure 8.  Performance metrics for MBP: (a) Innovation (5.2% out ). (b) Whiteness test (0.0008<0.1200 & 2.7%  

      out). (c)    WSSR Test (below threshold). 

 

 

MODEL-BASED PROCESSOR: SCINTILLATION /PHOTOMULTIPLIER DATA 

 In this section we applied the MBP of the previous section to the noisy uncertain 

measurement data of Fig. 5. Here the parameters of the MBP are adjusted to “track” the raw 

impulse data and the results are shown in Fig. 9 and 10. In Fig. 9 we observe the estimation of 

the photoelectron current, anode voltage and output voltage of the PMT unit. The estimates are 

quite reasonable and the predicted statistics (after re-tuning the MBP) also track the estimated 

signals. Of course, these results are not considered valid unless the performance metrics (zero-

mean/white innovations) are met. The performance is shown in Fig. 10 where we see that the 

criteria are met satisfactorily with the innovations sequence lying within the predicted bounds, 

the zero-mean/whiteness test being satisfied (0.0012<0.123/4.9% out) and the WSSR statistic 

lying beneath its predicted threshold. Thus, we have developed a MBP capable of extracting the 

noisy scintillation/photomultiplier data and predicting the underlying statistics. 
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Figure 9. MBP Estimation for Scintillator Voltage Response: (a) Photoelectron current (0.0% out). (b) Anode 

voltage (4.4% out). (c) Scintillator/Photomultiplier output voltage (4.4% out). 
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Figure 10. MBP Performance  for Scintillator Voltage Response: (a) Innovations sequence (0.6% out). (b) Zero-

mean/whiteness test (0.0012<0.123/4.7% out). (c) WSSR statistic (below threshold). 
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